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ABSTRACT 

The problem of fitting curves to observational data is quite old and continues to evince interest. The task is 

challenging when the genesis of the data is unknown. This leads to the complex problem of ordering the points and then 

fitting curves to these ordered points. The problem is further compounded when the points lie along non function-like 

curves, closed curves being a special case. This problem has been addressed earlier by us with respect to open, non 

function-like curves. In the present study, we solve the problem by first sampling the points along the target shape                     

(a closed curve), ordering the sampled points, segmenting the ordered points at significant points and subsequently 

approximate each segment parametrically. The approach is data guided in which the entire process, right from sampling, 

ordering, selecting the significant points and fitting curves to each segment is fully automated. Data determines the degree 

of each curve segment in such a way that the first and second derivatives at junction points match giving cubic spline 

smoothness to the whole fitting process. The technique has been applied on some test curves and results appear 

encouraging. Results on one test curve are presented.  

KEYWORDS:  Curve Parametrization, Curve Segmentation, Knot Selection, Minaddition, Minmaxion, Ordering of 

Points, Ordering Index 

1. INTRODUCTION  

Object recognition is one of the key issues in image analysis like general computer vision, military target 

recognition and biometrics. In many applications, image analysis can be reduced to the analysis of shapes. To describe 

shape through object boundary is a preliminary but critical step. Describing the boundary of an object reduces to the 

problem of curve or surface fitting. 

Curves have a striking visual nature. Curves that need to be fit arise in several contexts like in cartography and 

biology, to name a few. Giving analytical representation to these poses several challenges. This includes taking cognizance 

of noise and selection of a suitable fitting strategy. The problem can be stated as “given a set of ‘n’ data points                               

(xi, yi), i = 1: n taken from a target curve, reconstruct a curve which approximates the original curve to a satisfactory 

extent and which also pleases the eye”. Observational data are usually subject to measurement errors and hence 

approximation techniques may be preferred to interpolation techniques. This enables us to avoid unwanted undulations. We 

are concerned with analytical representation of simple closed curves by segmenting the target curve at meaningful points. 
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In the literature, many papers have dealt with the problem of curve fitting assuming that data are ordered. But 

ordering points by itself is a non-trivial problem particularly when the genesis of the data is unknown. The issue of 

ordering the points has been addressed in [13]. Matrix operations called minmaxion and minaddition [14, 15, 16, 17, 18] 

have been adopted successfully to achieve two goals (i) ordering of the points and (ii) defining a parametrization scheme. 

Non function like curves can be represented effectively using curve parametrization. A survey of existing methods 

for curve parametrization is briefly presented. When data points are already ordered, uniform parametrization, the simplest 

of all, has been tried but with less success. This is because this technique creates singularities like corners. A better strategy 

is to adopt chord length parametrization because chord length is actually an approximation of the true length of the fitted 

curve. Circular arc parametrization is yet another alternative in which the arc length is estimated by fitting a circle through 

each group of three consecutive points. [1, 2, 3, 4, 5, 6] can be referred for a survey of available parametrization 

techniques. One can also refer to [7, 8, 9, 10, 11]. We have a slightly different approach to the problem of curve 

parametrization. 

The paper is organized as follows 

In section II, the concepts of minmaxion and minaddition along with satiety have been explained leading to 

ordering of points and inducing curve parametrization. This is preceded by a strategic sampling technique to select data 

points along the target curve. In section III, curve segmentation strategies have been discussed. Segmentation of the curve 

at points where radii of curvature are a minimum along the curve has been chosen as the basis for knot selection. In section 

IV, the detailed fitting strategy with essential statistical analysis has been presented. Section V deals with conclusions. 

Section VI deals with future scope of study and Section VII cites references used in this study. 

(2) 2.1. SAMPLING OF DATA POINTS  

The target curve, a simple closed curve in this study, when digitized issues a dense set of points. We need to 

sample the points so as to retain most of the features but at the same time keep the number of selected points not too large. 

Otherwise the matrix computations that involve finding inter-node distances, minmaxion and minaddition matrices become 

unmanageable. We first fix a threshold distance ‘2’. Consider the first point as the source point. We find distances from the 

source point to all other points including the source point itself. Select all distances which are less than the threshold ‘2’. 

All such points can be treated as a cluster. Take points in this cluster away from the original set of points and find similar 

clusters as explained above till the list is exhausted. Take the geometric centers of each cluster. These centers form the 

sampling points. If the number of these cluster centers is too large, one can raise the threshold level iteratively till we 

accumulate cluster centers which are not too big in number. 

2.2. Minmaxion and Minaddition 

Pandit [14, 15, 16] visualized these operations particularly in the context of cluster analysis. Pandit and 

Ramamurthy [13] applied these operations in devising a new curve parametrization scheme. 

Definition: MINMAXION 

 is the min-max product of  and   
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Definition: MINADDITION 

 is the min-ad product of  and  

Satiated Matrices 

If A is a zero diagonal matrix of order n, and Ak+1 = Ak for some positive integer, k<n, then Ak is the satiated 

matrix of A. In fact, one can define satiated minmaxion and satiated minaddition even when the zero-diagonal matrix                        

D = [d ij]  is not symmetric. The satiated minmaxion and minaddition are exploited in inducing an ordering among points 

and defining the parameter for curve fitting. 

2.3 Ordering the Points and Parametrization 

Consider a test curve on which we take a discrete set of points. Once we have the co-ordinates of the point-pairs, 

we can compute inter-node distances dij (say, Euclidean distances) and store these distances in the distance matrix D. 

 

Let  be the minmax satiated matrix of D, i.e.  for some . The element  of 

gives the (  order) connective distance from i to j. Each of these paths will have a link of largest length. Then  is 

the smallest among these largest links in the different paths. Let  be the number of steps from i to j along this optimal 

path. The number and the actual path itself can be obtained by the use of minaddition. One can now define the Direct Link 

Matrix P from the matrix S as follows. 

 

The minad satiated matrix of , denoted by  called the step length matrix, gives the number of steps between 

point-pairs along these paths. Choosing a point-pair with largest step length, say to , one gets the path from to  on 

which a relatively large number of points lie in an ordered fashion; the number of steps between any point-pair along this 

path will be less than this number and one can take this path as an arterial path along which many points lie in a well-

defined sequence. If it so happens that,  one may infer that nodes  are the end 

points of a long connective path. Since the sequence of points between  is now available, one can accept this 

sequence of points along this path as the appropriate ordering among the n points. Ordering of points along a curve, in 

general a difficult problem by itself has now been addressed, particularly in the case of open curves. In the case of simple 

closed curves, one can segment the curve in to segments by a proper selection of knots. What remains to be tackled is 

curve parametrization. 

The ordering index of the connective path itself was proposed as the parameter t [13]. The coordinates 

)()( 21 tyandtx can now be fitted as functions of .  
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3. CURVE SEGMENTATION 

A global fit to the data using a single curve is not productive particularly when there are important features along 

the ordered data points. To fit curves to a set of irregularly spaced points, one has to (a) partition the data set into subsets 

(b) a curve should be fitted to the points in each subset. [17] discusses these issues in a particular way. One can refer [13] 

for a detailed description of the above aspects.  

K not locations for curve segmentation in our study are points of maximum curvature (minimum radius of 

curvature). The formulas to compute the ordinates of the center of the circle of curvature passing through 3 points 

),(and),(),,( 332211 yxCyxByxA joined by lines with slopes 21 mandm are given by 
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Then the radius of curvature at B is its distance from the center of curvature. The choice of the number of curve 

segments to be used to construct the curve from the given set of points is a non-trivial problem [18]. While too few 

segments will fail to represent the characteristics of the target curve, using too many segments will make the curve follow 

noise and introduce many unwanted undulations. Specifically, raising the number of segments will reduce the error 

between data points and the target curve, but may not necessarily mean that the solution is a better one. A pragmatic choice 

would be to use as few segments as possible to represent the resulting curve as long as the error between the data points 

and the curve is within some pre-specified tolerance. In this study, the number of curve segments that are generated is data 

guided. This is followed by approximating each segment. We have chosen to fit each segment by least squares polynomials 

ranging from linear to nonic (ninth degree) polynomials achieving continuity up to  at knots. The statistical error sum 

of squares is the basis for limiting the degree of the approximating polynomial for each segment. That is to say different 

segments are approximated by the best least squares polynomial which is determined by a pre fixed SSER tolerance (0.5 in 

our study). Numerical estimates of first and second derivatives are computed using the Newton’s divided differences 

interpolation formula. 

4. TEST RESULTS 

We consider a simple closed curve as the target curve, to illustrate the technique of ordering the points, locating 

knot points followed by piecewise polynomial approximations (linear to nonic) along with determination of the error sum 

of squares (SSER). Table 1 contains sampled data points; Table 2 contains knot point locations based on radii of curvatures 

Table 3 contains radii of curvatures at these pints.. Table 4 contains information about curve segments based on radii of 

curvatures. Knot positions are clearly coded in color. Table 5 contains the information about SSER. It can be observed that 

the SSER reduces significantly as one moves from linear to nonic approximations. Table 6 (a) and (b) give parametric 

coefficients for linear to nonic polynomial approximations for X (t1) and Y (t2) based on radii of curvature. Table 7 has 

information about )2()1( CandC  continuity at knots. We have consciously kept all matrix computation displays hidden 

due to the shear largeness of dimension. For a complete study of the technique, one may refer to [13].  

Figure 1 is the target curve. Figure 2 shows sampled points with knots determined through radii of curvature. 

Figure 3 shows curve segments. Figure 4 shows progress of parametric linear to nonic polynomial approximations for the 
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target curve based on the radii of curvature. Figure 5 shows the graphical displays of curve approximations based on radii 

of curvature. 

 

Figure 1: Target Curve (A Bird in Flight) 

Table 1: Sampled Data Points 

Points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

X 191 176 167 158 148 141 136 131 126 122 117 111 105 98 87 75 64 54 41 40 52 62 72 82 

Y 86 94 102 111 121 132 143 155 167 179 191 203 213 223 232 239 243 243 244 259 262 267 276 284 

Points 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

X 92 105 118 127 133 144 153 159 165 175 188 197 207 217 226 237 246 255 266 276 287 298 309 319 

Y 290 294 293 293 289 280 270 259 249 235 237 243 252 260 267 275 282 288 294 301 307 314 316 307 

Points 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 

X 335 346 356 368 364 356 348 340 334 328 321 313 305 298 289 281 272 263 257 263 272 282 292 300 

Y 306 310 313 311 299 289 280 270 261 252 242 232 222 212 203 195 188 179 168 157 148 141 131 122 

Points 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

 X 309 319 329 340 351 362 377 387 394 383 366 349 333 318 302 287 270 260 253 237 224 213 191 

Y 111 101 91 81 73 65 54 46 36 27 34 41 47 54 61 67 74 75 75 76 79 80 86 

 

Table 2: K Not Point Locations of Based on Radius of Curvature 

Knot locations 1 2 3 4 5 6 
Break points 19 33 46 50 66 80 

 
Table 3: Radius of Curvatures at Data Points 

Points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Radius of 
curvature 61.5 211 4074 62.27 89.7 394 4074 176 175.6 191.9 163.3 169.8 48.3 89.22 71.47 4074 4074 

Points 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
Radius of 
curvature 

10.74 10.71 53.95 45.90 226.1 91.15 52.3 35.7 4074 4073 109.6 90.94 55.77 294.5 180.8 14.53 27.75 

Points 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 
Radius of 
curvature 

83.87 226.1 883.6 387.7 387.7 152.1 131 111 111.1 189.7 31.50 13.98 22.41 33.98 193.2 24.97 8.162 

Points 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 
Radius of 
curvature 

36.24 239.4 239.4 136.2 4073 506.6 195 4073 195.4 71.46 4073 91.39 97.08 44.30 13.08 44.30 71.46 

Points 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 
Radius of 
curvature 

75.52 222.8 320.8 142.3 4073 304.8 130 4073 4073 373.9 43.98 9.735 15.94 4073 557.1 216.0 702.3 

Points 86 87 88 89 90 91 92 93 
 Radius of 

curvature 526.9 1709 49.08 4073 4073 89.44 89.6 96.5 

 
Table 4: Curve Segments Based on Radius of Curvature 

Segment 
No. 

Curve Segments 

1 
191 176 167 158 148 141 136 131 126 122 117 111 105 98 87 75 64 54 41 
86 94 102 111 121 132 143 155 167 179 191 203 213 223 232 239 243 243 244 

2 
41 40 52 62 72 82 92 105 118 127 133 144 153 159 165 

 
244 259 262 267 276 284 290 294 293 293 289 280 270 259 249 

3 
165 175 188 197 207 217 226 237 246 255 266 276 287 298 

 
249 235 237 243 252 260 267 275 282 288 294 301 307 314 

4 
298 309 319 335 346 

 
314 316 307 306 310 

5 
346 356 368 364 356 348 340 334 328 321 313 305 298 289 281 272 263 

 
310 313 311 299 289 280 270 261 252 242 232 222 212 203 195 188 179 

6 
263 257 263 272 282 292 300 309 319 329 340 351 362 377 387 

 
179 168 157 148 141 131 122 111 101 91 81 73 65 54 46 

7 
387 394 383 366 349 333 318 302 287 270 260 253 237 224 213 191 

 
46 36 27 34 41 47 54 61 67 74 75 75 76 79 80 86 
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Table 5: SSER for Linear to Nonic Polynomials 

Segmt No SSER for Linear to Nonic Polynomials (Radius olf Curvature) 
1 1222.185 1635.376 160.12 205.9253 37.49128 38.56871 15.15037 3.34860498 2.68 
2 530.6171 47.56439 21.17074 21.07041 20.88682 20.78199 20.76844 1.91E+01 13.6 
3 81.20338 60.34586 22.06759 4.524139 0.814219 0.170181 0 0 0 
4 4.606211 3.232641 1.295577 5.23E-20 0 0 0 0 0 
5 194.723 151.3564 138.163 121.8281 120.1376 121.0927 110.8727 104.262668 104 
6 517.4323 117.2036 117.6763 110.5642 109.3009 114.3818 111.406 102.986668 94.3 
7 2586.324 2526.567 1920.621 1392.711 1400.842 1416.598 1419.92 1427.77308 1331 

 
Table 6: Coefficients of Curve Segment Parametrization for x and y 

Coefficients of Linear to 9th Degree Polynomial Curve Approximations for x(t1) 
Segment 1 

Linear Quadratic Cubic Quartic Quintic Sextic Septic Octic Nonic 

16.6265 
0.8766 

2.8405 
1.1579 
-0.0012 

-76.0552 
3.7211 
-0.0256 
0.0001 

-35.8872 
1.9382 
0.0013 
-0.0001 

49.4260 
-2.8479 
0.1004 
-0.0011 

94.9136 
-5.9252 
0.1817 
-0.0021 

-226.1343 
19.4513 
-0.6325 
0.0117 
-0.0001 

-344.2449 
30.1125 
-1.0345 
0.0199 
-0.0002 

-4.3378 
0.4347 
-0.0185 
0.0004 

Coefficients of Linear to 9th Degree Polynomial Curve Approximations for y(t2) 
Segment 1 

Linear Quadratic Cubic Quartic Quintic Sextic Septic Octic Nonic 

-
10.4810 
1.1229 

-65.9688 
1.8578 
-0.0022 

168.2689 
-2.9110 
0.0282 
-0.0001 

46.4465 
0.4267 
-0.0046 
0.0001 

-15.1210 
2.5442 
-0.0327 
0.0003 

249.2060 
-8.3860 
0.1504 
-0.0013 

-2.6166 
0.1299 
-0.0026 

5.8824 
-0.3387 
0.0084 
-0.0001 

-2.8599 
0.1795 
-0.0049 
0.0001 

 
The parametric equations of linear to 9th degree polynomial approximations for x (t1) and y (t2) for the first 

segment based on radius of curvature are given below in their corresponding parametric ranges. In the 

ranges , ,  

 

Table 7: Table Showing C(1) and C(2) Continuity at Knots 
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Figure 2: Sampled Data Points Showing Knots              Figure 3: Curve Segments 

 

Figure 4: Curve Approximations of Each Segment from Linear to Nonic Best Fitted Polynomial 

 

Figure 5: Curve Approximations from Linear to Nonic Polynomials 

5. CONCLUSIONS 

Data that is collected from field experiments is usually not ordered and sometimes the genesis of the data in 

unknown. Sampling of the target curve is achieved by a data guided approach. Curve segmentation requires locating knot 

points and this has been achieved by selecting points where the radius of curvature is a minimum. Location of knots appear 

in natural positions. Ordering of the points is a critical operation preceding curve approximation. This has been achieved 

by finding the step-length matrix which gives the number of steps between point pairs along the paths. One can read the 

ordering sequence from this matrix between a point pair with largest step-length. The ordering index itself is chosen as the 

parameter ‘t’. The co-ordinates x(t) and y(t) are now fitted as function of ‘t’. The parameter ’t’ is in the ordinal scale.      

Each curve segment is approximated from linear to nonic polynomials iteratively. There is a tab on the degree of the 

approximating polynomial determined by the error sum of squares. C(2) continuity is achieved giving a cubic spline effect 
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to the fitting process. The study reveals that smooth closed curves can be well approximated by this study. Curves with 

sharp corners have produced mixed results. 

6. SCOPE FOR FURTHER STUDY 

Other knot selection strategies can be tried. The technique involving minmaxion and minaddition has been applied by the 

authors to approximate non function like lineal curves and now extended to simple closed curves by a piecewise fitting 

strategy. Curves with sharp corners may be the focus of the next study. Though the present study considers data with no 

noise, future studies can use denoising techniques in the preprocessing stage. Also under study is to use PCA to transform 

the test curve having a complex shape to PC reference frame where the shape complexity can be reduced. 

7. REFERENCES 

1. Epstein, M. P ‘on the influences of parametrization in parametric interpolation’ SIAM J. Numer Anal.                              

Vol 13(2), 1976, pp. 261-268. 

2. Earashaw J. L. and Yuille, I. M ‘A method of fitting parametric equations for curves and surfaces to sets of points 

defining them approximately’ – computer aided des. Vol 3 (1971), pp. 19-22. 

3. De Boor. D ‘ A practical guide to splines’ – Springer Verlay, Germany (1978) 

4. Matrin S, P. ‘An approach to data parametrization in parametric cubic spline interpolation problems’, 

Approximation theory vol 41(1984), pp. 64-86. 

5. Lee ETY ‘choosing nodes in parametric curve interpolation’ – Computer aided design vol 21 (6), 1989,                        

pp. 363-370. 

6. Hoschek J ‘ intrinsic parametrization for approximation’ – computer aided geometry des – vol 15 (1988)                       

pp. 27-31. 

7. Cohen E and O’Dell C.L. 1989 – ‘A data dependent parametrization for spline approximation’ – in mathematics 

models in computer aided geometry design, T. Lyche and L.L. Schumaker, Eds. Academic Press Prof. Inc., San 

Diego, CA, pp. 155-166. 

8. Fritsch R. E. and Carlson R. E. 1980 - ‘Montone piecewise cubic interpolation’ Siam J. Numer. Anal vol 17,                

pp 238-246. 

9. Kosters M. 1991, ‘Curvature dependent parametrization of curves and surfaces’ – Computer Aided Des,                        

vol 23 (8), pp 509-578. 

10. Marin S. P. 1984 – ‘An approach to data parametrization’. 

11. Mullinevx M, 1982 – ‘Approximating shapes using parametric curves’ – I M A J. Applied Mathematics                       

vol 29, pp.203-220. 

12. Sarkan B and Menq C. H., 1991 – ‘Parameter optimization in approximating curves and surfaces to measurement 

data’, Computer Aided Geometry Des. Vol 8 (4), pp.267-290. 

13. Pandit S N N, Ramamurthy S and Krishna Gandhi B – 2006 – ‘Curve Fitting when the curve may not be a 

function’ – Journal of Interdisciplinary Mathematics – vol 9(3), pp. 551 -568. 



On The Curvature Preserving Piecewise Approximation of Closed Planar Curves by Minmaxion                                                                              53 

 
www.iaset.us                                                                                                                                                     editor@iaset.us 

14. Dutt V A K – 1995 – Ph.D. thesis – Osmania University, Hyderabad – ‘Multivariate and related statistical 

methods in pattern recognition. 

15. Pandit S N N – 1961 – ‘A new matrix calculus’ – SIAM J- vol 9 – pp. 632-639. 

16. Pandit S N N – 1961 – ‘Minaddition and an algorithm to find most reliable paths in a network’ – I R E 

Transactions on circuit theory – vol 9, pp. 190-191. 

17. Pandit S N N, - 1963 – ‘Some quantitative Combinatorial Search Problems, Ph.D. Thesis, IIT, Kharagpur. 

18. Small C. G. – 1996 – ‘The statistical theory of shape’ – Springer. 




