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ABSTRACT

The problem of fitting curves to observational dataquite old and continues to evince interest. Tdsk is
challenging when the genesis of the data is unkndwis leads to the complex problem of ordering pbents and then
fitting curves to these ordered points. The problerfurther compounded when the points lie along function-like
curves, closed curves being a special case. Tlislgm has been addressed earlier by us with respegpen, non
function-like curves. In the present study, we eottie problem by first sampling the points along thrget shape
(a closed curve), ordering the sampled points, sefimg the ordered points at significant points @ubsequently
approximate each segment parametrically. The apprizadata guided in which the entire process,trighm sampling,
ordering, selecting the significant points andrfgtcurves to each segment is fully automated. Gatarmines the degree
of each curve segment in such a way that the dinsk second derivatives at junction points matclingicubic spline
smoothness to the whole fitting process. The teplmihas been applied on some test curves and sremoftear

encouraging. Results on one test curve are prakente

KEYWORDS: Curve Parametrization, Curve Segmentation, Kndeclien, Minaddition, Minmaxion, Ordering of

Points, Ordering Index
1. INTRODUCTION

Object recognition is one of the key issues in ienamalysis like general computer vision, militagyget
recognition and biometrics. In many applicatiomsage analysis can be reduced to the analysis geshdo describe
shape through object boundary is a preliminary dyitical step. Describing the boundary of an objestiuces to the

problem of curve or surface fitting.

Curves have a striking visual nature. Curves tlegdnto be fit arise in several contexts like inagraphy and
biology, to name a few. Giving analytical represgioh to these poses several challenges. Thisdasltaking cognizance
of noise and selection of a suitable fitting stggteThe problem can be stated agvén a set of ‘n’ data points
(%, i), i = 1. n taken from a target curve, reconstrictturve which approximates the original curve tsatisfactory
extent and which also pleases the ey®bservational data are usually subject to measemerarrors and hence
approximation techniques may be preferred to imt@tpon techniques. This enables us to avoid unechohdulations. We

are concerned with analytical representation opinalosed curves by segmenting the target curmeeahingful points.
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In the literature, many papers have dealt with ghablem of curve fitting assuming that data areeced. But
ordering points by itself is a non-trivial probleparticularly when the genesis of the data is unkmowhe issue of
ordering the points has been addressed in [13]ridMaperations calleaninmaxionandminaddition[14, 15, 16, 17, 18]

have been adopted successfully to achieve two gdardering of the points and (ii) defining a paretrization scheme.

Non function like curves can be represented effebtiusing curve parametrization. A survey of érigtmethods
for curve parametrization is briefly presented. Widata points are already ordered, uniform pararadion, the simplest
of all, has been tried but with less success. iBritiecause this technique creates singularitiesciners. A better strategy
is to adopt chord length parametrization becausedclength is actually an approximation of the theiegth of the fitted
curve. Circular arc parametrization is yet anotiternative in which the arc length is estimatediting a circle through
each group of three consecutive points. [1, 2, ,35,46] can be referred for a survey of availabé&ametrization
techniques. One can also refer to [7, 8, 9, 10, W& have a slightly different approach to the peob of curve

parametrization.
The paper is organized as follows

In section I, the concepts a@hinmaxionand minaddition along with satiety have been explained leading to
ordering of points and inducing curve parametr@atiThis is preceded by a strategic sampling teglaio select data
points along the target curve. In section Ill, @eegmentation strategies have been discussed eStdion of the curve
at points where radii of curvature are a minimuonglthe curve has been chosen as the basis fos&haation. In section
IV, the detailed fitting strategy with essentiaatittical analysis has been presented. Sectionalsdeith conclusions.

Section VI deals with future scope of study andti8acVIl cites references used in this study.
(2) 2.1. SAMPLING OF DATA POINTS

The target curve, a simple closed curve in thishstuvhen digitized issues a dense set of points.né&d to
sample the points so as to retain most of the featfiout at the same time keep the number of sdlgdiats not too large.
Otherwise the matrix computations that involve fimgdinter-node distances, minmaxion and minadditi@trices become
unmanageable. We first fix a threshold distanceCinsider the first point as the source point.fiNg distances from the
source point to all other points including the saupoint itself. Select all distances which ares lggn the threshold ‘2’.
All such points can be treated as a cluster. Taketpin this cluster away from the original setpoints and find similar
clusters as explained above till the list is extedisTake the geometric centers of each clustegsdttenters form the
sampling points. If the number of these clustert@snis too large, one can raise the threshold liéseatively till we

accumulate cluster centers which are not too bigumber.
2.2. Minmaxion and Minaddition

Pandit [14, 15, 16] visualized these operationstigdarly in the context of cluster analysis. Pandnd

Ramamurthy [13] applied these operations in degisimew curve parametrization scheme.

Definition: MINMAXION

.

. ; in : |
Cis the min-max product ¢l and 5 € = AQE wherec;; = N {max [_ﬂ:;;: x:-A}}
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Definition: MINADDITION

£ is the min-ad product ¢4 and & C£ AQE wherec = it {’max ['aii. + b, }}
] . . J

Satiated Matrices

If Ais a zero diagonal matrix of ordar andA“** = A* for some positive integek<n, thenA is the satiated
matrix of A. In fact, one can defingsatiated minmaxiorand satiated minadditioreven when the zero-diagonal matrix
D = [dj] is not symmetric. The satiated minmaxion and nitazh are exploited in inducing an ordering amaquaints

and defining the parameter for curve fitting.
2.3 Ordering the Points and Parametrization

Consider a test curve on which we take a discett@fspoints. Once we have the co-ordinates opthiat-pairs,

we can compute inter-node distancggsay, Euclidean distances) and store these disteindhe distance matrix D.
0, i=j

D=|[d,]= { -

¥ =0 , —__-A-_ju

Let S = D" be the minmax satiated matrix of D, iR” = D" = D"™* for somer < n. The element; of
D*gives the #** order) connective distance frdno j. Each of these paths will have a link of largesigth. Therd. is

the smallest among these largest links in the miffepaths. Lep.’. be the number of steps from i to j along this i

path. The number and the actual path itself caohit@ined by the use of minaddition. One can novindahe Direct Link
Matrix P from the matrix S as follows.
o i=j
P = [‘IEI:'_,"] = l d;'J'
xw otherwise
The minadsatiated matrix ofF, denoted byF " called thestep length matrixgives the number of steps between

point-pairs along these paths. Choosing a pointsygith largest step length, say to 5, one gets the path from to £ on

which a relatively large number of points lie in @mered fashion; the number of steps between aimg-pair along this

path will be less than this number and one can thisepath as an arterial path along which manytgdie in a well-

defined sequence. If it so happens tldf, = (n—1)or Foam™ (n — 1)one may infer that nodes to i are the end

points of a long connective path. Since the sequericpoints between t 5 is now available, one can accept this

sequence of points along this path as the apptepoi@ering among the n points. Ordering of poaltsng a curve, in
general a difficult problem by itself has now besldressed, particularly in the case of open cuilvethe case of simple
closed curves, one can segment the curve in to esgignby a proper selection of knots. What remainbe tackled is
curve parametrization.

The ordering index of the connective path itselfswaroposed as the parametefl3]. The coordinates

X(t;) and y(t,) can now be fitted as functions .
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3. CURVE SEGMENTATION

A global fit to the data using a single curve i$ pmductive particularly when there are importtaatures along
the ordered data points. To fit curves to a satrefjularly spaced points, one has to (a) partitt@data set into subsets
(b) a curve should be fitted to the points in eaghset. [17] discusses these issues in a partisalgr One can refer [13]

for a detailed description of the above aspects.

K not locations for curve segmentation in our stwdg points of maximum curvature (minimum radius of

curvature). The formulas to compute the ordinateshe center of the circle of curvature passingtigh 3 points

A(X,Y;), B(X,,Y,) andC (X;,Y,)joined by lines with slopesn, and m, are given by

Xe

:mlmz(yl_y3)+m2(X1+X2)_ml(X2+X3) v = 1 (X _X1+X2J+Y1+Y2
¢ 2 2

2(m2 - ml) ’ m,
Then the radius of curvature Btis its distance from the center of curvature. Theice of the number of curve
segments to be used to construct the curve frongithen set of points is a non-trivial problem [18Vhile too few
segments will fail to represent the characteristicthe target curve, using too many segmentsmalke the curve follow
noise and introduce many unwanted undulations. ifigaty, raising the number of segments will reduthe error
between data points and the target curve, but mapecessarily mean that the solution is a betier & pragmatic choice
would be to use as few segments as possible tesept the resulting curve as long as the errordmivthe data points
and the curve is within some pre-specified toleeame this study, the number of curve segmentsahagenerated is data

guided. This is followed by approximating each segmWe have chosen to fit each segment by leastreg polynomials
ranging from linear to nonic (ninth degree) polyral® achieving continuity up t3 (%) at knots. The statistical error sum

of squares is the basis for limiting the degre¢hefapproximating polynomial for each segment. Tifdd say different
segments are approximated by the best least squalgmmial which is determined by a pre fixed SSBRrance (0.5 in
our study). Numerical estimates of first and secdedvatives are computed using the Newton’s dididiEferences

interpolation formula.
4. TEST RESULTS

We consider a simple closed curve as the targetecto illustrate the technique of ordering thengsi locating
knot points followed by piecewise polynomial apgroations (linear to nonic) along with determinatiointhe error sum
of squares (SSER). Table 1 contains sampled datésp@able 2 contains knot point locations basedadlii of curvatures
Table 3 contains radii of curvatures at these pifitable 4 contains information about curve segséatsed on radii of
curvatures. Knot positions are clearly coded irocol'able 5 contains the information about SSERaft be observed that
the SSER reduces significantly as one moves froeali to nonic approximations. Table 6 (a) and (¢ garametric

coefficients for linear to nonic polynomial approtions forX () andY () based on radii of curvature. Table 7 has
information aboutC® and C® continuity at knots. We have consciously keptadkrix computation displays hidden

due to the shear largeness of dimension. For a lebengtudy of the technique, one may refer to [13].

Figure 1 is the target curve. Figure 2 shows sathplEints with knots determined through radii ofvaiure.

Figure 3 shows curve segments. Figure 4 shows @segf parametric linear to nonic polynomial apprations for the
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target curve based on the radii of curvature. Eigushows the graphical displays of curve approtiona based on radii

of curvature.

Figure 1: Target Curve (A Bird in Flight)

Table 1: Sampled Data Points

Points 1 2 8 4 5] 6 7 8 | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
X 191 176 167 158 148 141 13 13|1 146 122 m7 111 05 98 87 75 64 54 41 40 52 6. 7. Sb
Y 86 94 102 111 121 132] 14! 15 167 179 191 203 1323 p 232 239 243 243 244 25 26p 267 216 2B4

Points 25 26 27 28 29 30 el 32 B8] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
X 92 105 118 127 133! 144 15 159 165 175 1B8 197 07217 226 237 246 255 264 27 28f 298 309 319
Y 290 294 293 293 289 280 27 25p 249 235 2B7 443 52260 267 275 282 288| 294 30 307 314 316 307

Points 49 50 51 52 8] 54 5] 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
X 335 346 356 368 364 354 34t 34p 334 378 3p1 313 05298 289 281 272 263 257 26 27p 242 292 300
Y 306 310 313 311 299 289 28l 27p 261 252 242 432 22212 203 195 188 179 164 15 14B 141 131 1p2

Points 8 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
X 309 319 329 340 351 3623 37 38 394 383 3F6 349 33318 302 287 270 260 253 23 22p 213 191
Y 111 101 91 81 73 65] 54 3 2y 314 41 7 b4 61 67 4 |7 75 75 76 79 80 86

Table 2: K Not Point Locations of Based on RadiusfcCurvature
Knot locations 1 2 3 4 5 6
Break points 19 33 46 50 66 80
Table 3: Radius of Curvatures at Data Points
Points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

?uar(\j/isl:tig 61.5 211 4074 62.27 89.7 394 4074 176 17%.6 19[1.963.31| 169.8 48.3 89.22 71.47 4074 4074

Points 18 19 20 21 22 23 24 25 26 27 28| 2 3 31 3 33 34

?:Sgig 10.74 10.71 53.95 45.90 226.1 91.1] 5213 357 40744073 109.6 90.94 55.77| 294.5 180.B 14.%3 27.[75

Points 35 36 37 38 39 40 41 42 43 44 45| 4 4 4 4p 50 51

Suar?/ialljtig 83.87 226.1 883.6 387.7| 387.7 152 131 111 111.189.71 31.50 13.98 22.41 33.9 193.p 24.97 8.162

Points 52 53 54 55 56 57 58 59 60 61 62 6 64 6! 6p 67 68

?uar(\j/i:tig 36.24 239.4 239.4 136.2| 4073 506. 195 4073 195.41.467 4073 91.39 97.08| 44.30 13.0B 44.30 71.46

Points 69 70 71 72 73 74 75 76 77 78 79 8 8 82 83 84 85

Suar?/ialljtig 75.52 222.8 320.8 142.3 4073 304, 13p 4073 4073 3.937 43.98 9.735 15.94 4073 557.1 2160 703.3

Points 86 87 88 89 90 91 92 93

?uar(\j/isl:tig 526.9 1709 49.08 4073 4073 89.4; 89.p 96(5

Table 4: Curve Segments Based on Radius of Curvater
Seﬁzent Curve Segments
1 - 176] 167] 15§ 148 141 136 131 1p6 122 J17 [111 [1@B | 87 | 75| 64| 54| 41
94 | 102| 111 121 132 143 185 1p7 179 191 P03 [2133 |2232| 239] 243 244 244
5 41 | 40| 52| 62| 72| 82 94 106 118 127 1B3 144 153 -
244 | 259| 262| 2671 276 284 290 294 203 J93 P89 P80 |[27B9
3 - 175| 188] 1971 207 21f 226 287 246 J55 P66 [276 | 298
235| 237 243 252 26p 2847 275 282 288 $94 [01 | 314
4 298| 309| 319] 33
314 | 316] 307 30
5 - 356| 368 364 356 348 340 384 3p8 3J21 B13 05 [2989 | 281] 272 263
313 311] 299 289 28D 2740 261 252 J42 P32 P22 |2203| 195| 188 179
6 263 | 257| 263] 2720 282 29p 300 309 319 J29 B40 P51 |3827 -
179 | 168| 157 148 141 13@ 142 111 11 91 B1 |73 |65
7 - 394| 383 366 349 338 318 302 2B7 470 260 [53 |22374 | 213|101
36 | 27| 34| 41| 470 54 61 67 74 75 15 16 |19 86
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Table 5: SSER for Linear to Nonic Polynomials

Segmt No SSER for Linear to Nonic Polynomials (Radius olf Cwature)
1 1222.185| 1635.37¢ 160.12 205.9253 37.49128 38.568K115037| 3.34860498 2.68
2 530.6171| 47.56439 21.17074 21.07041 20.88682 209B20.76844| 1.91E+01 | 13.6
3 81.20338| 60.34586 22.067%9 4.524139 0.814219 081701 O 0
4 4.606211| 3.232641 1.2955717 5.23E4{20 0 0 0 0
5 194.723 | 151.3564 138.163 121.8281 120.1B876 121.092D.8727| 104.262668 104
6 517.4323| 117.203¢ 117.6763 110.5642 109.3009 118.38111.406| 102.986668 94
7 2586.324| 2526.567 1920.621 1392.111 1400842 1@86.51419.92| 1427.77308 133
Table 6: Coefficients of Curve Segment Parametrizaétn for x and y
Coefficients of Linear to 9" Degree Polynomial Curve Approximations for x(t)
Segment 1
Linear | Quadratic | Cubic | Quartic | Quintic Sextic Septic Octic Nonic
2 8405 -76.0552| -35.8872| 49.4260 | 94.9136 2136452,3 :;?34121229 -4.3378
16.6265 1'1579 3.7211 | 1.9382 | -2.8479 | -5.9252 0 .6325 1 '0345 0.4347
0.8766 _0"0012 -0.0256 | 0.0013 | 0.1004 | 0.1817 0"0117 O..0199 -0.0185
0.0001 | -0.0001 | -0.0011 | -0.0021 -0.0001 -0.0002 0.0004
Coefficients of Linear to 9" Degree Polynomial Curve Approximations for y(t)
Segment 1
Linear | Quadratic | Cubic | Quartic | Quintic Sextic Septic Octic Nonic
168.2689| 46.4465| -15.1210| 249.2060 5.8824 | -2.8599
10_;1810 'i‘_r’é%f;? -2.9110 | 0.4267 | 2.5442 | -8.3860 'g_'legg -0.3387 | 0.1795
11229 | -0.0022 0.0282 | -0.0046 | -0.0327 | 0.1504 -0.0026 0.0084 | -0.0049
-0.0001 | 0.0001 | 0.0003 | -0.0013 -0.0001 | 0.0001

The parametric equations of linear t8 @egree polynomial approximations fer(t) andy (t) for the first

segment based on radius of curvature are givenwbelo their corresponding parametric ranges.

rangestl = ty = 191,86 = £, = 244,

In the

xltyl =
Table 7: Table Showing ¢” and C? Continuity at Knots

CO-Continuity= |
Io| 053] 089 e | le | 15Te| 22o | Qde| Q4o Bo| Qde| 2o [ 167e[ ld3e] 08z | 06z | 036 O | -0de[i-152x|
75| J53a| 025:| 050 | 09= | 0.8z | 0509 | 0307<| 0.08=] 0= | 067a| 082 | 10ls| 18| L7a | 1da |°
32| M= | 0054=| 0.666=] 09= | 0.8= | 07772 | 0.727=] 0.18=] 0.67=] 054=| 0.0= | 0.54= | 0.64= | 0.18%= |0
42| 0182:| 09z | 0062 0362 | 03z |
55| 03z | 07| 30082 135 | LD3= | 1280 | 1503 L& | 143 12%] 13%= | L] I= Ie [ 0.78=] L00I=] L§d=]o
60| E8do| -1.33x mE] 0.7z B LR | 1220 -lo Sl | 09Le| 073 | 073x| 073| 08z | -l43afC
72| 143z 0819 041s| 0ds | 0385 | 047c | O04da| 0ds | 0ds| 0ds| 0 | 006s] 023s] 0ds | 03=| 05k

CO-Continuity |
1=] 0:022c] 0.04%] 0.053a] 0.039=] 0031z | 0.221c | 0241c] 0.267a] 033] 02192] 0.67=] 0129x] 008z | 0.036= | 0.025:] 0.017=] O= | 0.006s] -1.38c |
75| 1382] 0.011=| 0.025c] 0.043%=] 004 | 0026z | 0012z M= | O= | 0.04=| 0.0l=| 0.07=] 005=] 0d= | 0062] = [o
35| H.06s] 0.007=| 0.035a] 0.0452] 0.04%= | 0.039 | 0.036z] 0043 0.03z| 0.026=] 0.033= | 0.025] 0.029=] 0.009= |o
#2] 0:009=] 0.03=| 0= | 0.017=] 0014z o
55| 0i0dc| -0.02c| -025x| 0.08=| -0.07c | -0.089= ] -0.130] 012s] -0.1o| -0.08a] -0.083] -0.09a | -0.06z] -0.06z | -0.04c] -0.067c] 183.65]
62| 13365 002=| 0.05:| 003 00553 0066z 0062 0.05:| la | 0.04c| 0033 003 | 003=| 0.05= | 0358
7o | 0358a] 003 | 0.012=] 0.012=] 0.012= | 0015 | 0.004s] 0013 0.02=] 0.006=] 0= | 0.002=] 0.01= | 0.003= | 0.007=] 0.022z e
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Figure 2: Sampled Data Points Showing Knots Figure 3: Curve Segments

ath segment

Figure 4: Curve Approximations of Each Segment fronlinear to Nonic Best Fitted Polynomial
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Figure 5: Curve Approximations from Linear to Nonic Polynomials
5. CONCLUSIONS

Data that is collected from field experiments isally not ordered and sometimes the genesis ofdttia in
unknown. Sampling of the target curve is achieveé lolata guided approach. Curve segmentation esylocating knot
points and this has been achieved by selectinggpuaihere the radius of curvature is a minimum. tiocaeof knots appear
in natural positions. Ordering of the points isritical operation preceding curve approximationisThas been achieved
by finding the step-length matrix which gives thember of steps between point pairs along the p&@hs. can read the
ordering sequence from this matrix between a pmait with largest step-length. The ordering indself is chosen as the
parameter ‘. The co-ordinateqt) and y(t) are now fitted as function of ‘t'. The parametéris in the ordinal scale.
Each curve segment is approximated from lineardoicpolynomials iteratively. There is a tab on thegree of the

approximating polynomial determined by the erromsaf squares. © continuity is achieved giving a cubic spline effect
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to the fitting process. The study reveals that sim@tosed curves can be well approximated by thidys Curves with

sharp corners have produced mixed results.

6. SCOPE FOR FURTHER STUDY

Other knot selection strategies can be tried. Eolrtique involvingninmaxionandminadditionhas been applied by the

authors to approximate non function like linealvas and now extended to simple closed curves higaewise fitting

strategy. Curves with sharp corners may be thesf@fuhe next study. Though the present study densidata with no

noise, future studies can use denoising technibguthe preprocessing stage. Also under study isseoPCA to transform

the test curve having a complex shape to PC raferBame where the shape complexity can be reduced.
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